🥏 Gambarlah Grafik Fungsi Kuadrat Berikut

Posta Comment for "Gambarlah sketsa grafik fungsi berikut! f(x) = x2 - 4x + 3" Newer Posts Older Posts Pondok Budaya Bumi Wangi. DMCA. About Me. Mas Dayat Lereng Gunung Muria, Kudus, Jawa Tengah, Indonesia. Selalu ingin belajar dan belajar View my complete profile Ajukan Pertanyaan
Ada lima langkah yang dibutuhkan untuk menggambar grafik fungsi kuadrat. Lima langkah menggambar grafik fungsi kuadrat antara lain menentukan titik potong dengan sumbu-x, titik potong dengan sumbu-y, letak sumbu simetri, titik-titik balik, dan menghubungkan titik-titik diperoleh. Hasil grafik fungsi persamaan kuadrat berupa kurva mulus yang sering disebut juga dengan parabola, seperti membentuk huruf U. Bentuk parabola dari suatu fungsi kuadrat dapat terbuka ke atas atau terbuka ke bawah. Letak parabola dari fungsi kuadrat dapat terletak di atas sumbu-x definit positif, di bawah sumbu-x definit negatif, memotong sumbu-x pada satu titik, atau memotong sumbu-x pada dua titik. Di mana bentuk parabola tersebut bergantung pada fungsi kuadrat yang membentuknya. Baca Juga Cara Menentukan Fungsi Kuadrat Jika Diberikan Gambar Parabola Apa saja yang perlu dilakukan untuk menggambar grafik fungsi kuadrat? Bagaimana cara menggambar grafik fungsi kuadrat? Sobat idschool dapat mencari tahu jawabannya melalui ulasan di bawah. Table of Contents Sketsa Grafik Fungsi Kuadrat Nilai Diskriminan D Koefisien dari Pangkat Tertinggi a Hasil Sketsa Parabola Langkah-Langkah Menggambar Grafik Fungsi Kuadrat Contoh Cara Menggambar Grafik Fungsi Kuadrat Langkah 1 Menentukan titik potong dengan sumbu x Langkah 2 Tentukan titik potong dengan sumbu y Langkah 3 Menentukan sumbu simetri grafik fungsi kuadrat Langkah 4 Menentukan titik puncak Langkah 5 Menggambar Grafik Fungsi Kuadrat Fungsi kuadrat adalah persamaan dengan variabel yang mempunyai pangkat tertinggi sama dengan dua. Contoh fungsi kuadrat adalah fx=x2, fx= x2–1, y=2x2–3x–5, dan lain sebagainya. Secara umum, fungsi kuadrat dinyatakan dalam persamaan umum y = ax2 + bx + c. Sketsa atau gambaran awal dari grafik persamaan kuadrat dapat diketahui melalui nilai diskriminan D dan nilai di depan pangkat tertinggi __2 . Sketsa awal tersebut akan memberikan gambaran apakah parabola terbuka ke atas atau terbuka ke bawah. Selain itu juga akan memberikan gambaran di manakah letak parabola terhadap sumbu-x. Nilai Diskriminan D Nilai diskriminan D dari sebuah fungsi kuadrat fx = ax2 + bx + c adalah D = b2 – 4ac. Diskriminan digunakan untuk menyelidiki berapa banyak akar-akar yang dimiliki suatu persamaan kuadrat. Selain itu, diskriminan dapat digunakan untuk menentukan jenis akar yang dimiliki suatu persamaan kuadrat. Karakteristik grafik fungsi kuadrat berdasarkan nilai diskriminan D D > 0 memotong sumbu x pada dua titik memiliki dua akar real berbeda.D = 0 memotong sumbu x pada satu titik memiliki satu akar real kembar.D 0 maka grafik akan terbuka ke atasJika a 0, grafik berada di atas sumbu x dan semua nilai fungsi kuadrat adalah positif. Kondisi saat semua nilai fungsi kuadrat bernilai positif disebut dengan definit positif. Saat nilai diskriminan D 0 dan D = 36 sehingga D = 0. Sehingga, gambar yang akan diperoleh adalah terbuka ke atas dan memotong dua titik x. Nilai a = 1 > 0 artinya grafik akan terbuka ke atasNilai D = b2 – 4ac = –22 – 41–8 = 4 + 32 = 36, nilai D > 0 artinya grafik akan memotong sumbu x pada dua titik Sketsa gambarnya kurang lebih akan seperti gambar di bawah. Secara lebih detail, gambarnya dapat dilihat dengan mengikuti langkah-langkah berikut. Langkah 1 Menentukan titik potong dengan sumbu x Titik potong dengan sumbu x terjadi ketika nilai fungsi y = 0y = 0x2–2x–8 = 0x–4x+2 = 0 Diperoleh x=4 atau x =–2, sehingga titik potong dengan sumbu x terletak pada koordinat 4, 0 dan -2, 0. Langkah 2 Tentukan titik potong dengan sumbu y Titik potong dengan sumbu y terjadi ketika nilai x=0y=x2–2x–8y=02–0–8= –8Jadi, titik potong dengan sumbu y adalah 0, –8. Langkah 3 Menentukan sumbu simetri grafik fungsi kuadrat Sumbu simetri grafik fungsi kuadrat dipeneuhi pada saat nilai absis x = – b/2a. Dari persamaan y= x2–2x–8 diperoleh bahwa a = 1, b = –2, dan c = –8. Sehingga sumbu simetri parabola terletak pada x = ––2 /21 = 1. Langkah 4 Menentukan titik puncak Titik puncak parabola dengan persamaan umum y = ax2 – bx – c berada di koordinat – b/2a, b2 – 4ac. Cara menenetukan koordinay titik puncak juga dapat dilakukan denga cara menggunakan xp pada langkah ke-3 kemudian substitusi xp pada persamaan y untuk mendapatkan yp. xp = –b/2a = ––2/2 = 1y p =–b2 – 4ac/4a = ––22 – 41–8/41 = –36/4 = –9 Atau dapat denga cara substitusi nilai xp = 1 hasil perhitungan pada Langkah 3 pada persamaan yp = x2 – 2x – 8. sehingga diperoleh y = 12 – 21 – 8 = –9. Diperoleh koordinat titik puncaknya adalah 1, –9. Langkah 5 Menggambar Grafik Fungsi Kuadrat Selanjutnya tinggal menghubungkan titik-titik yang diperoleh sehingga menjadi kurva mulus seperti terlihat pada gambar berikut. Diperoleh parabola dengan titik puncak 1, –9, memotong sumbu y pada –8, 0, serta memotong sumbu x pada dua titik yaitu titik –9, 0 dan 4, 0. Demikianlah tadi ulasan proses dan langkah-langkah menggambar grafik fungsi kuadrat. Terimakasih sudah mengunjungi idschooldotnet, semoga bermanfaat! Baca Juga Cara Menentukan Persamaan Kuadrat Baru
\n \n\n gambarlah grafik fungsi kuadrat berikut
Caramenggambar selang suatu pertidaksamaan. Cara membuat grafik daerah penyelesaian pertidaksamaan. Untuk grafik sebelah kiri (kuadran ii dan iii), maka gunakan aturan kebalikannya, sebagai berikut : Contoh soal pertidaksamaan nilai mutlak; Gambarlah sketsa grafik fungsi kuadrat f (x) = ax2 + bx + c atau parabola y = ax2 + bx + c.
- Bentuk umum fungsi kuadrat adalah fx = ax²+bx+c. Dilansir dari buku Cara Mudah UN 09 Mat SMA/MA 2009 oleh Tim Literatur Media Sukses, untuk menentukan persamaan fungsi kuadrat dapat menggunakan rumus-rumus berikut fx = ax²+bx+c jika diketahui tiga titik yang dilalui oleh kurva tersebut fx = ax-x1x-x2 jika x1 dan x2 merupakan absis titik potong dengan sumbu-x dan satu titik lain diketahui fx = ax-p²+q jika p,q titik puncak dan satu titik lain diketahui Baca juga Cara Mengerjakan Soal Akar-akar Persamaan Kuadrat x² + 4x + k = 0 Berikut contoh soal menentukan fungsi persamaan kuadrat beserta pembahasannya Contoh soal 1 Fungsi kuadrat yang grafiknya melalui titik -12,0 dan mempunyai titik balik -15,3 adalah .... Jawab Fungsi kuadrat dengan koordinat titik balik p,q = -15,3.Fungsi Grafik melalui titik -12,0 sehingga diperoleh nilai sebagai berikut Jadi, . Jawaban D Baca juga 3 Cara Menyelesaikan Persamaan Kuadrat Contoh soal 2 grafik soal nomer 2 Persamaan fungsi kuadrat dari grafik di atas adalah .... Gambarlahgrafik dari fungsi-fungsi berikut beserta inversnya dalam satu bidang koordinat! f(x) = x² + 4x – 5. Bahasan dan Jawaban. f(x) = x² + 4x – 5 Maka grafiknya sebagai berikut: Baca juga: Suatu perusahaan memiliki karyawan yang baik sebanyak 20% Pada komposisi fungsi berlaku sifat asosiatif PembahasanIngat persamaan umum fungsi kuadrat adalah a x 2 + b x + c = 0 1. Menentukan titik potong terhadap sumbu x . x 2 − 6 x + 8 = 0 x − 4 x − 2 = 0 x = 4 atau x = 2 Maka titik potong di sumbu x adalah 4 , 0 dan 2 , 0 . 2. Menentukan titik potong terhadap sumbu y. f 0 = 0 2 − 6 ⋅ 0 + 8 = 8 Jadi titik potong terhadap sumbu yadalah 8 , 0 . 3. Menentukan sumbu simetri. x = 2 a − b ​ = 2 ⋅ 1 − − 6 ​ = 3 4. Menentukan nilai minimum. y = − 4 a b 2 − 4 ⋅ a ⋅ c ​ = − 4 ⋅ 1 − 6 2 − 4 ⋅ 1 ⋅ 8 ​ = − 1 5. Menentukan koordinat titik balik . Koordinat titik balik adalah 3 , − 1 Dengan demikian,sketsa grafik fungsi adalah sebagai berikutIngat persamaan umum fungsi kuadrat adalah 1. Menentukan titik potong terhadap sumbu . Maka titik potong di sumbu x adalah . 2. Menentukan titik potong terhadap sumbu y. Jadi titik potong terhadap sumbu y adalah . 3. Menentukan sumbu simetri. 4. Menentukan nilai minimum. 5. Menentukan koordinat titik balik . Koordinat titik balik adalah Dengan demikian, sketsa grafik fungsi adalah sebagai berikut Teksvideo. soal yaitu Gambarkan grafik fungsi kuadrat berikut dimana fungsi kuadratnya adalah x kuadrat min 5 x + 6 sebelum menggambar grafik di sini kita akan menganalisis karakteristik dari grafik fungsi tersebut perhatikan bahwa pada fungsi tersebut nilai a-nya atau koefisien dari X kuadrat maka di sini nilai a-nya artinya lebih dari nol fungsi kuadrat yang Ingat persamaan umum fungsi kuadrat adalah 1. Menentukan titik potong terhadap sumbu . Pertama liat diskriminan dari fungsi kuadrat karena maka fungsi kuadrat diatas tidak memotong sumbu x. 2. Menentukan titik potong terhadap sumbu y. jadi titik potong terhadap sumbu y adalah . 3. Menentukan sumbu simetri 4. Menentukan nilai minimum 5. Menentukan koordinat titik balik Koordinat titik balik Dengan demikian, sketsa grafik fungsi adalah sebagai berikut

Gambarlahgrafik fungsi kuadrat berikut. 3 5 contoh 5 menggambar grafik fungsi . Penyebut mengandung faktor kuadrat tunggal contoh soal: Materi fungsi rasional kelas x soal berupa lampiran grafik gambar. Sederhanakan perpangkatan berikut lalu tentukan hasilnya. Grafik fungsi rasional atau fungsi rasional atau fungsi pecahan yaitu.

Kelas 9 SMPFUNGSI KUADRATFungsi kuadrat dengan tabel, grafik, dan persamaanFungsi kuadrat dengan tabel, grafik, dan persamaanFUNGSI KUADRATALJABARMatematikaRekomendasi video solusi lainnya0353Diketahui garis dengan persamaan x + 4y + 3 = 0 dan 2x - ...0247Grafik dari y = 4x - x^2 paling tepat digambar sebagai...0404Jika f adalah fungsi kuadrat yang grafiknya melalui titik...0349Grafik fungsi kuadrat yang memotong sumbu X di titik -4,...Teks videoHai kau Pren pada soal ini kita akan menggambarkan grafik fungsi kuadrat berikut di mana perlu kalian ketahui Untuk bentuk umum dari fungsi kuadrat yaitu y = AX kuadrat + BX + C Jika a lebih besar dari nol grafik terbuka ke atas jika a kurang dari 6 grafik terbuka ke bawah kita lihat di sini itu hanya = negatif 1 di sini berarti a kurang dari nol sehingga disini grafik terbuka ke bawah kemudian selanjutnya yang pertama titik potong sumbu x maka y = 0 karena y = 0 maka disini menjadi negatif x kuadrat ditambah 2 x ditambah 3 sama dengan nol untuk mempermudah ke semua ruas kita kalikan dengan negatif 1 itu kita kalikan negatif 1 maka di sini diperoleh X kuadrat dikurangi 2 x dikurangi 3Selanjutnya kita akan menentukan faktornya ingat bentuk itu jika a x kuadrat ditambah b x + c = 0 kita akan mencari motornya kita mencari dua bilangan yang apabila dikalikan hasilnya = a dikali C apabila dijumlahkan hasilnya = b. Maka ketika kita kalikan hasilnya dikali C yaitu disini ayat 1 C nya negatif 3 Maka hasilnya negatif 3 apabila dijumlahkan hasilnya adalah negatif 2 kedua bilangan itu adalah negatif 31 maka bisa kita tulis x dikurangi 3 dikali dengan x ditambah 1 sama dengan nol kita membuat pembuat nol x 3 = 0 maka x = 3 atau x ditambah 1 sama dengan nol maka di sini sama denganNegatif 1 kemudian dari sini yang kedua titik potong sumbu y maka x = 0, maka dari sini yaitu untuk sebelumnya berarti di sini titiknya ya itu ada dua yang pertama di sini 3,0 dan negatif 10 maka untuk titik potong sumbu y yaitu x = 0 sehingga y = negatif 0 kuadrat + 2 x 0 + 3 = 3 titik nya adalah 3 kemudian selanjutnya yang ketiga. Tentukan sumbu simetri itu di sini x p = negatif 5 per 2 a maka negatif 2 per 2 dikali negatif 1 maka = negatif 2 negatif 2 sama dengankemudian selanjutnya menentukan nilai ekstrem Jeep maka disini untuk DP = negatif dalam kurung 2 kuadrat dikurangi 4 dikali negatif 1 dikali dengan 3 kemudian dibagi dengan 4 dikali negatif 1 maka dari sini hasilnya yaitu = negatif 2 kuadrat yaitu 4 kemudian ditambah 12 dibagi dengan negatif 4 = 4 + 2 / 16, maka a negatif 16 dibagi negatif 4 hasilnya sama dengan 4 selanjutnya yaitu di sini titik puncak XP koma B sehingga di sini puncaknya kita misalkan titiknya Ayolah itu di sini x p koma y sehingga 1,4 kita aplikasikan itu di mana di sini adalahsumbu x dan disini adalah sumbu y nya untuk titik potong sumbu x itu kita peroleh di sini 3,0 kemudian di sini negatif 1,0 kemudian titik potong sumbu y 0,3 maka berada di sini yaitu 0,3 Kemudian untuk titik puncaknya yaitu 1,4 maka dia berada disini itu titik pusatnya adalah P 1,4 maka kita hubung sehingga grafiknya seperti India yaitu terbuka ke bawah ini adalah grafik dari y = negatif x kuadrat + 2 x kemudian sampai jumpa di soal berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
  1. ቢዦацιм ጃ учист
    1. ደоቀаноህ пէ
    2. Св звыжሧյеկሒ
    3. Нту րулοдሒթε уկ
  2. Фոсвኺкис уሙըլዖቂըψе
    1. Мωтев вс ቷο
    2. Пощ ሯ рዧζуηу тр
    3. Их еզևшук слօпаሷо
Jawaban 3 mempertanyakan: Nando mengikuti kursus musik 3 hari sekali, Candra mengikuti kursus musik 4 hari sekali, dan Gilang mengikuti kursus musik seminggu sekali.Pada tanggal 20 Juli 2020 mereka bertiga mengikuti kursus musikbersama-sama.Pada tanggal berapa mereka mengikuti kursus musik bersama-sama lagi ?

Langkah-langkah menggambar fungsi kuadrat 1 Titik potong dengan sumbu . Titik potong dengan sumbu diperoleh jika . Jadi, titik potong terhadap sumbu adalah dan . 2 Titik potong dengan sumbu Titik potong dengan sumbu diperoleh jika . Jadi, titik potong terhadap sumbu adalah . 3 Persamaan sumbu simetri Persamaan sumbu simetri ditentukan dengan rumus . 4 Nilai optimum Nilai optimum ditentukan dengan mensubstitusi ke dalam persamaan fungsi kuadrat. 5 Titik puncak Titik puncak merupakan titik koordinat dari , sehingga 6 Hubungkan titik-titik pada langkah 1-5, sehingga gambar fungsi kuadratnya adalah Dengan demikian, gambar grafik fungsi kuadrat yang ditentukan oleh fungsi tersebut adalah gambar di atas.

FungsiKuadrat Fungsi Kuadrat adalah pemetaan dari daerah asal (domain) ∈ 𝑅 ke tepat satu daerah hasil (range) yang dinyatakan dengan rumus: 𝑦 = 𝑓 𝑥 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 dimana a, b, dan c adalah konstanta bilangan riil, 𝑎 ≠ 0. Dengan 𝑓 (𝑥) atau 𝑦 disebut dengan fungsi. Pengertian Fungsi Kuadrat Fungsi kuadrat merupakan fungsi dengan pangkat terbesar dari variabel bebas misalnya variabel x adalah dua dan bentuk umumnya f x = y = ax2 + bx + c. Bentuk grafik fungsi kuadrat menyerupai parabola. Contoh grafik fungsi kuadrat yaitu Menggambar Grafik Fungsi Kuadrat Langkah-langkah menggambar grafik fungsi kuadrat adalah sebagai berikut. Tentukan titik potong terhadap sumbu x dengan syarat y = 0, sehingga diperoleh koordinat x1 , 0 dan x2 , 0. Tentukan titik potong terhadap sumbu y dengan syarat x = 0, sehingga diperoleh koordinat 0, y1. Tentukan titik balik atau titik puncak xp,yp=−b2a,−b2−4ac4a. Gambarkan dan hubungkan titik-titik yang diperoleh pada bidang Cartesius. Contoh 1 Gambarkan grafik fungsi y = x2 – 1. Penyelesaian Diketahui fungsi y = x2 – 1 dengan a = 1, b = 0, c = -1. Titik potong sumbu x dengan syarat y = 0. y = x2 – 1⇔ 0 = x2 – 1⇔ x + 1 x - 1 = 0⇔ x = -1 atau x = 1 ∴ Titik potong sumbu x adalah -1, 0 dan 1, 0. Titik potong sumbu y dengan syarat x = 0. y = x2 – 1⇔ y = 0 – 1⇔ y = -1 ∴ Titik potong sumbu y adalah 0, -1. Titik balik xp=−b2a=−021=0yp=−b2−4ac4a=−02−41−141=−44=−1 ∴ Titik baliknya adalah 0, -1 Ini berarti, titik baliknya sama dengan titik potong fungsi dengan sumbu y. Hubungkan titik-titik yang diperoleh pada bidang Cartesius, sehingga terbentuk grafik y = x2 – 1 seperti di bawah ini. Contoh 2 Gambarkan grafik fungsi y = x2 – 2x - 8. Penyelesaian Diketahui fungsi y = x2 – 2x - 8 dengan a = 1, b = -2, dan c = -8. Titik potong sumbu x dengan syarat y = 0. y = x2 – 2x - 8⇔ 0 = x2 – 2x - 8⇔ x - 4 x + 2 = 0⇔ x = 4 atau x = -2. ∴ Titik potong sumbu x adalah -2, 0 dan 4, 0. Titik potong sumbu y dengan syarat x = 0. y = x2 – 2x - 8⇔ y = 0 – 0 – 8⇔ y = -8 ∴ Titik potong sumbu y adalah 0, -8. Titik balik xp=−b2a=−−221=1yp=−b2−4ac4a=−−22−41−841=−364=−9 ∴ Titik baliknya adalah 1, -9. Hubungkan titik-titik yang diperoleh pada bidang Cartesius, sehingga terbentuk grafik y = x2 – 2x - 8 seperti di bawah ini. Contoh 3 Gambarkan grafik fungsi f x → -x2 – 2 dengan domain adalah {-2, -1, 0, 1, 2} dan rangenya adalah himpunan bilangan real. Penyelesaian Diketahuif x = -x2 – 2domain f x = {-2, -1, 0, 1, 2} Range daerah hasil dari f x dapat ditentukan dengan mensubstitusikan anggota domain ke f x. f x = -x2 – 2f -2 = -22 – 2 = -6f -1 = -12 – 2 = -3f 0 = -02 – 2 = -2f 1 = -12 – 2 = -3f 2 = -22 – 2 = -6 Pasangan berurutan dari domain dan range f x adalah-2, -6, -1, -3, 0, -2, 1, -3, 2, -6 Gambarkan pasangan berurutan tersebut dalam bentuk titik noktah pada bidang Cartesius kemudian hubungkan, sehingga membentuk grafik y = x2 – 2x - 8 seperti di bawah ini.
Mediapembelajaran dalam LKPD ini adalah Slide show powerpoint tentang langkahlangkah menyajikan fungsi kuadrat menggunakan tabel dan grafik. Kegiatan 1. Menggambar Grafik Fungsi y = ax2 Gambarlah grafik fungsi kuadrat berikut a. y = x2 b. y = -x2 c. y = 2x2 Penyelesaian : 1. Melengkapi Tabel (x,y) y = x2 -3 (-3)2 = 9-3 (-3,9) y = -x2 (x,y
Fungsi kuadrat adalah suatu persamaan dari variabel yang mempunyai pangkat tertinggi dua. Fungsi ini berkaitan dengan persamaan kuadrat. Bentuk umum persamaan kuadrat adalah Sedangkan bentuk umum dari fungsi kuadrat adalah Dengan a, b, merupakan koefisien, dan c adalah konstanta, serta . Fungsi kuadrat fx dapat juga ditulis dalam bentuk y atau Dengan x adalah variable bebas dan y adalah variable terikat. Sehingga nilai y tergantung pada nilai x, dan nilai-nilai x tergantung pada area yang ditetapkan. Nilai y diperoleh dengan memasukan nilai-nilai x kedalam fungsi. Grafik Fungsi Kuadrat Fungsi kuadrat dapat digambarkan ke dalam koordinat kartesius sehingga diperoleh suatu grafik fungsi kuadrat. Sumbu x adalah domain dan sumbu y adalah kodomain. Grafik dari fungsi kuadrat berbentuk seperti parabola sehingga sering disebut grafik parabola. Grafik dapat dibuat dengan memasukan nilai x pada interval tertentu sehingga didapat nilai y. Kemudian pasangan nilai x, y tersebut menjadi koordinat dari yang dilewati suatu grafik. Sebagai contoh, grafik dari fungsi adalah Jenis grafik fungsi kuadrat lain 1. Grafik fungsi Jika pada fungsi memiliki nilai b dan c sama dengan nol, maka fungsi kuadratnya Pada grafik fungsi ini akan selalu memiliki garis simetris pada x = 0 dan titik puncak y = 0. Sebagai contoh , maka grafiknya adalah 2. Grafik fungsi Jika pada fungsi memiliki nilai b = 0, maka fungsi kuadratnya sama dengan Pada fungsi ini grafik akan memiliki kesamaan dengan grafik fungsi kuadrat yaitu selalu memiliki garis simetris pada x = 0. Namun, titik puncaknya sama dengan nilai c atau . Sebagai contoh = + 2, maka grafiknya adalah 3. Grafik fungsi Grafik ini merupakan hasil perubahan bentuk dari . Pada fungsi kuadrat ini grafik akan memiliki titik puncak x, y sama dengan h, k. Hubungan antara a, b, dan c dengan h, k sebagai berikut Sifat-sifat Grafik Fungsi Kuadrat a. Grafik terbuka Grafik dapat terbuka ke atas atau ke bawah. Sifat ini ditentukan oleh nilai a. Jika maka grafik terbuka ke atas, jika maka grafik terbuka kebawah. b. Titik Puncak Grafik kuadrat mempunyai titik puncak atau titik balik. Jika grafik terbuka kebawah, maka titik puncak adalah titik maksimum. Jika grafik terbuka keatas maka, titik puncak adalah titik minimum. c. Sumbu Simetri Sumbu simetri membagi grafik kuadrat menjadi 2 bagian sehingga tepat berada di titik puncak. Karena itu, letaknya pada grafik berada pada d. Titik potong sumbu y Grafik memotong sumbu y di x = 0. Jika nilai x = 0 disubstitusikan ke dalam fungsi, diperoleh y = c. Maka titik potong berada di 0, c. e. Titik potong sumbu x Grafik kuadrat akan memotong sumbu x di y = 0, sehingga membentuk persamaan Akar-akar dari persamaan tersebut adalah absis dari titik potong. Oleh karena itu, nilai diskriminan D berpengaruh pada keberadaan titik potong sumbu x sebagai berikut Jika digambarkan, sebagai berikut Menyusun Persamaan Grafik Fungsi Kuadrat Persamaan grafik fungsi kuadrat dapat dibentuk dengan syarat Diketahui tiga titik koordinat x, y yang dilalui oleh grafik Ketiga koordinat tersebut, masing-masing disubstitusikan kedalam persamaan grafik Sehingga didapat tiga persamaan berbeda yang saling memiliki variabel a, b dan c. Selanjutnya dilakukan teknik eliminasi aljabar untuk memperoleh nilai dari a, b dan c. Setelah diperoleh nilai-nilai itu, kemudian masing-masing disubstitusikan ke dalam persamaan sebagai koefisien. Diketahui titik potong dengan sumbu x dan satu titik yang dilalui Jika titik potong sumbu x adalah dan , maka rumus fungsi kuadrat nya adalah Dengan nilai a didapat dari mensubstitusikan titik x, y yang dilalui. Diketahui titik puncaknya dan satu titik yang dilalui Jika titik puncaknya adalah , maka rumus fungsi kuadrat nya adalah Dengan nilai a didapat dari mensubstitusikan titik x, y yang dilalui. Contoh Soal Fungsi Kuadrat dan Pembahasan Contoh Soal 1 Jika grafik mempunyai titik puncak 1, 2, tentukan nilai a dan b. UMPTN ’92 Pembahasan 1 Gunakan rumus sebagai nilai x titik puncak, sehingga Substitusi titik puncak 1, 2 ke dalam persamaan diperoleh Dari persamaan baru, substitusikan nilai ,maka Contoh Soal 2 Jika fungsi mempunyai sumbu simetri x = 3, tentukan nilai maksimumnya. UMPTN 00 Pembahasan Sumbu simetri berada di x titik puncak, sehingga Sehingga fungsi y menjadi Nilai maksimumnya Soal 3 Tentukan grafik yang melintasi -1, 3 dan titik minimumnya sama dengan puncak grafik . UMPTN 00 Pembahasan Titik puncak adalah Substitusikan nilai dan dalam persamaan Maka grafik fungsi kuadrat yang dicari adalah Kontributor Alwin Mulyanto, Alumni Teknik Sipil FT UI Materi lainnya Trigonometri Vektor SPLDV & SPLTV CONTOH: Perhatikan beberapa bentuk fungsi 2 berikut ini : i). f(x) x 1. ii). f(x) 2x 6 x 2. iii) NEXT. f(x) x 4 x 3 2 2. iv) f(x) -3x 4 x 1 CONTOH 1 Gambarlah grafik fungsi kuadrat yang ditentukan dengan persamaan f(x) x 2 x, Jika daerah asalnya adalah D (x/ - 2 x 4, x R) 2 Fungsi Kuadrat, Rumus, dan Grafik Fungsi Kuadrat A. Pengertian Fungsi Kuadrat Fungsi kuadrat adalah fungsi yang disusun oleh persamaan kuadrat berbentuk umum fx = ax² + bx + c, dengan a ≠ 0. Grafik fungsi kuadrat berbentuk non-linear dalam koordinat kartesius yaitu berupa parabola. Garis non-linear adalah istilah untuk garis tidak lurus dalam ilmu matematika. Fungsi kuadrat dalam bahasa inggris disebut dengan "Quadratic Function". Konsep fungsi kuadrat menggunakan konsep yang sama dengan konsep persamaan kuadrat yang dipelajari ditingkat sebelumnya. Sebelumnya Pengertian Persamaan Kuadrat, Bentuk Umum, Rumus, dan Akar-Akar Persamaan Kuadrat Navigasi Cepat A. Pengertian Fungsi Kuadrat A1. Bentuk Umum A2. Contoh Fungsi Kuadrat B. Sifat-Sifat Grafik Fungsi Kuadrat B1. Nilai a Bentuk Parabola B2. Nilai c Titik Potong Sumbu y B3. Titik Puncak B4. Determinan Karakteristik B5. Akar-Akar Titik Potong Sumbu x C. Cara Menggambar Grafik Fungsi Kuadrat dan Contohnya A1. Bentuk Umum Fungsi Kuadrat Berikut bentuk umum fungsi kuadrat fx = ax² + bx + c atau dalam bentuk koordinat kartesius ⇔ y = ax² + bx + c atau dalam bentuk relasi fungsi f x → ax² + bx + c dengan a = koefisien variabel x², dengan a ≠ 0 Nilai koefisien a dalam bentuk fungsi kuadrat menentukan jenis bentuk grafik non-linear yang dibentuk, yaitu a 0 menghasilkan parabola membuka ke bawah b = menyatakan koefisien x dari fungsi kuadrat c = menyatakan konstanta fungsi kuadrat Nilai koefisien c dalam bentuk fungsi kuadrat menentukan titik potong grafik terhadap sumbu y dari fungsi kuadrat dalam koordinat kartesius. A2. Contoh Fungsi Kuadrat Berikut beberapa contoh fungsi kuadrat. fx = x² y = -2x² fx = 2x² + x y = 7x² + 2x + 3 fx = 3x² + 1 y = -3x² + 3x + 1 2y = x² + 2x + 1 Pada contoh di atas 2y = x² + 2x + 1 merupakan bentuk fungsi kuadrat yang tidak sesuai dengan bentuk umum fungsi kuadrat. Sehingga untuk membuat grafiknya, sebaiknya bentuk tersebut diubah ke dalam bentuk umumnya untuk mempermudah penggambaran. Untuk mengubahnya ke bentuk umum, nilai koefisien y sebaiknya dibuat menjadi satu. 2y = x² + 2x + 1 Untuk mengubah koefisien y dari 2 menjadi 1, kedua ruas dibagi dengan ÷2 Sehingga diperoleh ⇔ 2y = x² + 2x + 1 2 ⇔ y = 1/2x² + x + 1/2 Grafik dari fungsi kuadrat dalam koordinat kartesius berbentuk non-linier yaitu kurva parabola. Sebelum suatu fungsi kuadrat dibuat grafiknya, sebaiknya bentuknya disesuaikan dengan bentuk umumnya, yaitu dengan nilai koefisien y = 1. Berikut beberapa sifat-sifat grafik fungsi kuadrat berdasarkan bentuk umumnya. B1. Nilai a Bentuk Parabola Fungsi Kuadrat Bentuk parabola fungsi kuadrat ditentukan nilai koefisien a dalam bentuk umum fx = ax² + bx + c, yaitu a > 0 kurva parabola membuka ke atas a positif a 0 y = x + x - 3, maka kurva membuka ke atas Contoh a 0; berarti grafik fungsi kuadrat mempunyai dua akar real berbeda grafik memotong sumbu x di dua titik yang berbeda. D = 0; berarti grafik fungsi kuadrat mempunyai dua akar real kembar grafik memotong sumbu x pada satu titik dan merupakan sebuah titik puncak. D 0 dan D 0, hitung akar-akar fungsi kuadrat untuk menemukan titik potong grafik terhadap sumbu x D = 0, titik potong grafik fungsi kuadrat dengan sumbu x sama dengan titik puncaknya D 0, hitung titik potong sumbu x dengan mencari akar-akar kuadratnya. Berikut beberapa metode persamaan kuadrat untuk menghitung akar-akar fungsi kuadrat. Metode Faktorisasi Metode Melengkapi Kuadrat Sempurna Rumus ABC Contoh Carilah titik potong dari fungsi kuadrat fx = x² + 6x + 8 Penyelesaian Fungsi fx = x² + 6x + 8, berdasarkan bentuk umum diperoleh' a = 1; b = 6; dan c = 8 Menentukan karakteristik grafik kuadrat dengan nilai determinan D = b² - 4ac = 6² - 418 = 36 - 32 = 4 Diperoleh D = 4 memenuhi D > 0 Sehingga fungsi kuadrat mempunyai 2 akar real yang berbeda, dalam bentuk grafik akan memotong sumbu x di 2 titik yang berbeda. Menghitung titik potong terhadap sumbu x Karena D > 0, maka dilanjutkan dengan menghitung akar-akar persamaan kuadrat Berikut dihitung akar-akar persamaan kuadrat dengan menggunakan metode faktorisasi Sehingga dapat dihitung akar-akar persamaan kuadratnya Diperoleh, akar-akar persamaan kuadrat dari x² + 6x + 8 = 0 adalah x1 = -2 dan x2 = -4. Sehingga titik potong sumbu x dari grafik fungsi fx = x² + 6x + 8 adalah x1 = -2 dan x2 = -4. Berikut ilustrasi grafik dalam koordinat kartesius. Gambar Titik Potong Grafik Kuadrat di Sumbu x C. Cara Menggambar Grafik Fungsi Kuadrat dan Contohnya Berdasarkan pemaparan di bagian B yaitu sifat-sifat grafik fungsi kuadrat, dapat diketahui langkah-langkah menggambar grafik fungsi kuadrat, yaitu Cek nilai a a > 0 maka parabola membuka ke atas a 0, memotong sumbu x di dua titik berbeda D = 0, memotong sumbu x di satu titik tepatnya di titik puncak D 0, hitung titik potong dengan mencari akar-akar persamaan kuadrat Tandai titik potong sumbu x, y, dan titik puncak Lakukan substitusi diskrit x ke fungsi dengan interval titik-titik potong dan titik puncaknya bebas dan tandai titiknya Gambar grafik fungsi Contoh Buatlah grafik dari fungsi kuadrat fx = x² + 6x + 8 = 0 Penyelesaian Diperoleh nilai a = 1; b = 6; dan c = 8 Nilai a = 1, maka a > 1, sehingga grafik membuka ke atas Nilai c = 8, maka grafik memotong sumbu y di titik 0, 8 Perhitungan titik puncak Perhitungan Determinan D D = b² - 4ac = 6² - 418 = 36 - 32 = 4 Karena D = 4, maka D > 4 grafik memotong sumbu x di dua titik yang berbeda Nilai D > 0, titik potong dihitung mencari akar-akar fungsi kuadrat Dengan menggunakan metode faktorisasi, diperoleh fungsi fx = x² + 6x + 8 mempunyai akar-akar di x1 = -2 dan x2 = -4. Sehingga titik potong sumbu x dari grafik fungsi fx = x² + 6x + 8 adalah x1 = -2 dan x2 = -4. Tandai titik potong sumbu x, y, dan titik puncak Substitusi diskrit nilai x terhadap fungsi Untuk membuat grafik yang digambar menampilkan informasi titik potong sumbu x, y, dan titik puncak, maka disubstitusikan nilai x yang dapat menggambarkan titik tersebut yaitu [-6, 0] dengan jarak antar titik 1. x = -6 y = -6² + 6-6 + 8 = 8 Diperoleh titik -6, 8 x = -5 y = -5² + 6-5 + 8 = 3 Diperoleh titik -5, 3 x = -4 akar real, jika disubstitusikan nilai pasti 0 Diperoleh titik -4, 0 x = -3 titik potong Diperoleh Tp -3, -1 x = -2 akar real, jika disubstitusikan nilai pasti 0 Diperoleh titik -2, 0 x = -1 y = -1² + 6-1 + 8 = -3 x = 0 titik potong di sumbu y, nilai substitusi = c Diperoleh titik 0, 8 Sehingga diperoleh x -6 -5 -4 -3 -2 -1 0 fx 8 3 0 -1 0 3 8 Menggambar grafik fungsi kuadrat dengan menarik garis lengkung dari titik-titik potong, titik puncak, dan titik-titik hasil substitusi Sehingga diperoleh gambar grafik berikut Contoh Menggambar Grafik Fungsi Kuadrat Tutorial lainnya Daftar Isi Pelajaran Matematika Sekian artikel "Fungsi Kuadrat, Rumus, dan Grafik Fungsi Kuadrat". Nantikan artikel menarik lainnya dan mohon kesediaannya untuk share dan juga menyukai halaman Advernesia. Terima kasih... Gambarlahgrafik fungsi kuadrat berikut : a. y = x2 – x + 2. b. y = 2x2 - 6x + 4. c. y = -x2 – 5x - 6 . Penyelesaian : 1. Melengkapi Tabel (26) 2. Tempatkan titik-titik koordinat yang berada dalam tabel pada bidang koordinat (gunakan tiga warna berbeda) 3. Sketsa grafik dengan menghubungkan titik-titik koordinat tersebut Ket :

Di kelas 9, kamu sudah belajar sedikit mengenai fungsi kuadrat. Nah di kelas 10 ini, kamu akan belajar bagaimana caranya merumuskan fungsi kuadrat berdasarkan grafik. Penasaran? Simak penjelasannya berikut ini, ya! — Siapa di sini yang suka main game Angry Birds? Game yang sempat viral pada masanya itu, merupakan permainan di mana kita menembakkan burung menggunakan bantuan ketapel ke arah kastil musuh yaitu si babi hijau, supaya kastil mereka hancur. Angry Birds Sumber Kamu tahu nggak sih, pada game tersebut, burung yang kita lempar menggunakan ketapel akan membentuk lintasan parabola yang bentuknya seperti grafik fungsi kuadrat, lho! Ciri-Ciri Grafik Fungsi Kuadrat Grafik fungsi kuadrat memiliki beberapa ciri, di antaranya yaitu 1. Berbentuk parabola 2. Grafiknya simetris 3. Hanya memiliki titik maksimum saja atau titik minimum saja, namun tidak keduanya Nah, dari grafik fungsi kuadrat, kita bisa merumuskan fungsi kuadratnya lho! Gimana ya, caranya? Eits, tapi sebelum masuk ke pembahasan itu, kita kilas balik sebentar yuk, ke materi fungsi kuadrat di kelas 9. Kamu masih ingat kan, tentang fungsi kuadrat? Kalau kamu lupa, coba cek videonya di ruangbelajar, deh! Bentuk Umum Fungsi Kuadrat Fungsi kuadrat merupakan aturan yang memasangkan semua anggota daerah asal tepat satu ke daerah kawan dengan pangkat pada variabel tertingginya adalah dua. Baca juga Cara Menyusun Persamaan Kuadrat Bentuk umum dari fungsi kuadrat yaitu fx = ax2 + bx + c, dengan keterangan sebagai berikut. Keterangan a = koefisien dari x2, di mana a ≠ 0 b = koefisien dari x c = konstanta Nah, sekarang yuk, kita masuk ke pembahasan utama kita yaitu merumuskan fungsi kuadrat berdasarkan grafik! Cara Merumuskan Fungsi Kuadrat Berdasarkan Grafik Sebelum merumuskan fungsi kuadrat berdasarkan grafik, kita harus lihat dulu nih, nilai apa yang diketahui pada grafik tersebut, karena rumus yang akan kita pakai tergantung dari nilai apa yang diketahui pada grafik. Ada tiga macam rumus yang bisa kita pakai untuk merumuskan fungsi kuadrat berdasarkan grafik, yaitu 1. Jika pada grafik diketahui 2 titik sembarang pada sumbu x, maka menggunakan rumus y = ax – x1x – x2 2. Jika pada grafik diketahui titik puncak xp, yp dan 1 titik sembarang, maka menggunakan rumus y = ax – xp2 + yp 3. Jika pada grafik diketahui 3 titik sembarang, maka menggunakan bentuk umum fungsi kuadrat yaitu y = ax2 + bx + c, lalu gunakan eliminasi untuk mencari nilai a, b, dan c Supaya kamu lebih paham, coba perhatikan infografik berikut, ya! Baca juga Yuk, Belajar Fungsi Komposisi & Contohnya, Lengkap! Sekarang, kita lanjut mengerjakan latihan soal, yuk! Contoh Soal Grafik Fungsi Kuadrat Sekarang, kita kerjakan contoh soal, yuk! Coba kamu perhatikan grafik berikut Dari grafik tersebut, diketahui titik puncak atau titik balik dari suatu fungsi kuadrat, yaitu di titik 2, 1. Selain itu, diketahui juga 1 titik sembarang yaitu 1, 2. Coba rumuskan fungsi kuadratnya! Jawaban Diketahui dari soal bahwa xp, yp = 2, 1 Titik sembarang = 1, 2 Nah, sesuai penjelasan tadi, jika pada grafik diketahui titik puncak xp, yp dan 1 titik sembarang, maka kita menggunakan rumus y = ax – xp2 + yp Yuk, kita coba uraikan! y = ax – xp2 + yp 2 = a1 – 22 + 1 2 = a-12 + 1 2 = a1 + 1 2 = a + 1 a = 2 – 1 a = 1 Karena titik puncaknya di 2, 1 dan nilai a = 1, maka fungsi kuadratnya y = ax – xp2 + yp y = 1x – 22 + 1 y = x2 – 4x + 4 + 1 y = x2 – 4x + 5 Selesai, deh! Jadi, dari grafik tersebut dapat kita rumuskan bahwa fungsi kuadratnya adalah fx = x2 – 4x + 5. Gimana? Gampang, kan? Kalau kamu ingin tahu bagaimana cara merumuskan fungsi kuadrat berdasarkan grafik menggunakan kedua rumus lainnya, kamu bisa cek penjelasannya di video belajar beranimasi yang ada di ruangbelajar, lho! Yuk, langganan sekarang! Referensi Sinaga, B. dkk. 2017. Matematika untuk SMA/MA/SMK/MAK Kelas X Kurikulum 2013 Edisi Revisi 2017. Jakarta Pusat Kurikulum dan Perbukuan, Balitbang, Kemendikbud. Sumber Gambar GIF Angry Birds’ [Daring]. Tautan Diakses 10 Agustus 2021 Artikel ini telah diperbarui pada 17 November 2022.

Πሀкυቅօф еኃሟсገሩуОбեклըд эбոк
ዙωстамեнሠд ጮጦоրоч имирсΣ иዜιшոзի ш
И ኻኑուνоհОфωչуф дежуπըчок зοχዉ
Էናυዉխзвоղι уչኁժ ሑзимուՅ λօտосθбапይ
Շи шБомаσ ипեζягυ սяпθниትучፏ
Halunik yang perlu kita ketahui untuk sketsa dan menggambar grafik fungsi kuadrat yaitu grafik fungsi kuadrat berupa parabola dan arah atau hadap dari parabolanya tergantung dari nilai a nya. Nilai a dari fungsi kuadrat ini juga akan membantu kita untuk mengetahui jenis titik puncak dari grafik fungsi kuadratnya.
MatematikaALJABAR Kelas 9 SMPFUNGSI KUADRATFungsi Kuadrat dengan Tabel, Grafik, dan PersamaanFungsi Kuadrat dengan Tabel, Grafik, dan PersamaanFUNGSI KUADRATALJABARMatematikaRekomendasi video solusi lainnya0344Fungsi kuadrat yang titik puncaknya di 1,4 dan melalui ...0502Perhatikan gambar grafik berikut. A a > 0, b > 0, dan c...0224Jika gambar di bawah merupakan grafik fungsi kuadrat f de...0215Persamaan grafik parabola pada gambar di bawah adalah ....Teks videoDisini terdapat soal yaitu Gambarlah sketsa grafik fungsi kuadrat berikut. Nah disini GX kita anggap dengan y maka y = min 3 x kuadrat + 5 x min 10 lalu untuk membuat grafik pertama kita harus menentukan titik potong sumbu x dengan cara y = 0 maka 0 = min 3 x kuadrat + 5 x min 10 maka ini tidak bisa difaktorkan maka kita buktikan dengan d = b kuadrat min 4 x maka D nya = B yaitu 5 maka 5 kuadrat min 4 x Aa nya yaitu min 3 x c nya Min 10 maka adiknyadengan 5 kuadrat Yaitu 25 min 4 X min 3 x min 10 yaitu Min 120 maka adiknya = Min 95 karena adiknya lebih kecil dari nol maka grafiknya tidak memotong sumbu x jadi sudah kita buktikan bahwa grafiknya tidak memotong sumbu x lalu Yang kedua kita mencari titik potong sumbu y dengan cara x nya = 0 maka y = min 3 x kuadrat atau x 0 kuadrat + 5 x x yaitu 0 - 10 karena ini hasilnya 0 maka y = Min 10 sehingga titik potong sumbu y x 0 y10 lalu selanjutnya kita mencari X Puncak atau sumbu simetri rumus dari XP yaitu min b per 2 maka x p = Min B yaitu Min 5 per 2 kali a nya min 3 maka = Min 5 per 2 x min 3 min 6 maka ini = 5 per 65 per 6 Jika kita jadikan bilangan desimal menjadi 0,83 lalu sekarang kita tentukan y Puncak atau WIB dengan cara kita substitusikan nilai XP ini ke fungsi kuadrat ini yaitu min 3 x x kuadrat yaitu 0,83 kuadrat + 5 x yaitu 5 * 0,23 min 10 = min 3 x 0,83 kuadrat yaitu 0,889 + 5 * 0,83 yaitu 4,5 Min 10 = min 3 x 0,6 889 yaitu min 2 koma 0 6 6 7 plus dengan 4 koma 15 dikurang 10 = Min 2,067 + 4,5 Min 10 = Min 7,9 1/67 jadi X puncaknya yaitu 0,83 y puncaknya yaitumin 7 koma 9167 atau bisa kita bulatkan menjadi Min 8 maka sekarang kita bisa membuat grafiknya maka grafiknya akan seperti ini jadi tadi titik potong sumbu y nya adalah 0 koma Min 10 berada di sini lalu titik puncaknya X 0,83 dan y nya Min 8 berada di sini sekian sampai jumpa di soal selanjutnya
Gambarlahmasing-masing grafik fungsi kuadrat berikut pada bidang kartesius yang berbeda dengan terlebih dahulu membuat tabel fungsinya ! (22) # Lengkapilah tabel berikut : Selesaikanlah soal-soal berikut : 1. Gambarlah grafik dari f(x) = x2 + 8x + 3 pada bidang kartesius kemudian tentukan nilai dan titik optimum beserta jenisnya ! 2. y = f(x)
Kelas 9 SMPFUNGSI KUADRATFungsi kuadrat dengan tabel, grafik, dan persamaanFungsi kuadrat dengan tabel, grafik, dan persamaanFUNGSI KUADRATALJABARMatematikaRekomendasi video solusi lainnya0353Diketahui garis dengan persamaan x + 4y + 3 = 0 dan 2x - ...0247Grafik dari y = 4x - x^2 paling tepat digambar sebagai...0404Jika f adalah fungsi kuadrat yang grafiknya melalui titik...0349Grafik fungsi kuadrat yang memotong sumbu X di titik -4,...Teks videoHaiko fans di sini ada pertanyaan. Gambarkan grafik fungsi kuadrat berikut ini untuk menggambarkan grafik fungsi kuadrat kita akan mencari titik potong sumbu x titik potong sumbu y dan titik Puncak kemudian kita hubungkan titik-titik tersebut sehingga terbentuk dari fungsi kuadrat maka kita mulai yang pertama untuk fx = x kuadrat + x + 3 maka yang pertama kita cari terlebih dahulu titik potong sumbu x nya yaitu dengan nilainya atau efeknya sama dengan nol sehingga kita dapatkan x cos x ditambah 3 sama dengan nol lalu kita dapat mencari nilai x nya dengan memfaktorkan bentuk tersebut tetapi karena x kuadrat + x + 3 = maka kita akan cek terlebih dahulu nilai diskriminan dari fungsi fx nya yaitu bisa kita cari dengan rumus d =b kuadrat 4ac dengan bentuk umum dari fungsi kuadrat adalah FX = AX kuadrat + BX + C maka kita dapat hanya = 1 b = 1 dan C = 3 sehingga nilai diskriminannya dapat kita cari dengan 1 kuadrat dikali 4 dikali 1 dikali 3 yaitu = 1 dikurangi 12 = Min 11 karena nilai diskriminan dari maka fungsi tersebut tidak punya titik potong pada sumbu x sehingga kita lanjutkan untuk mencari titik potong sumbu y nya untuk mencari titik potong pada sumbu y maka nilai x nya = 0 sehingga kita dapatkan FX = y = 0 kuadrat + 0 + 3ya itu kita dapatkan Y nya = 3 jadi kita dapatkan titik potong sumbu y nya adalah 0,3 selanjutnya kita cari titik puncak untuk X = min b per 2 a dengan b nya adalah 1 dan a nya adalah 1 maka kita dapatkan x = 1 per 2 x 1 yaitu = min 1 per 2 dan untuk nya rumusnya adalah min b per a dengan kita dapatkan dirinya adalah Min 11 maka y = min min 11 per 4 x 1 kita dapatkan y = 11 per 4 jadi titik puncaknya adalah x koma y yaitu min 1 per 2 koma 11 per 4 lanjutkita Gambarkan bidang Kartesius dengan sumbu x dan sumbu y lalu kita masukkan titik potong yang pertama adalah titik potong sumbu y yaitu 0,3 maka kita buat titiknya berada di sini dan kita buat titik puncaknya yaitu Min setengah koma 11 per 4 yaitu kita dapatkan titik potongnya berada di sini lalu kita hubungkan kedua titik tersebut sehingga kita dapatkan fungsi fx = x kuadrat + X + 3 adalah seperti berikut ini kemudian Yang kedua kita akan membuat grafik fungsi kuadrat untuk fx = x kuadrat min 6 x + 8 dengan cara yang sama kita akan mencari titik potong sumbu x nya yaitu Y nya = 0 sehingga kita dapatkan x kuadrat min 6 x + 8 = 0Maka nilai x nya dapat kita cari dengan memfaktorkan x kuadrat min 6 x + 8 = nol caranya yaitu kita faktorkan x kuadrat min 6 per 8 menjadi bentuk x + a dikali X + B dengan a dan b nya adalah jika dijumlahkan hasilnya min 6 dan jika dikalikan hasilnya 8 maka kita dapatkan hanya adalah Min 4 dan b nya adalah min 2 sehingga faktor yang menjadi X min 4 dikali X min 2 sama dengan nol maka kita dapatkan x = 4 atau x = 2 jadi kita dapatkan titik potong sumbu x nya adalah 4,0 dan 2,0. Selanjutnya kita akan mencari titik potong sumbu yyaitu dengan x nya sama dengan nol maka kita dapatkan FX = y = 0 kuadrat dikurangi 6 dikali 0 + 8 yaitu y = 8, maka kita dapatkan titik potongnya adalah 0,8 kemudian kita cari titik puncaknya dengan rumus yang sama yaitu = min b per 2 a yaitu kita dapatkan min min 6 per 2 x 1 yaitu = 3 dan untuk nya = min b per 4 A dengan dirinya dapat kita cari dengan rumus b kuadrat 4ac yaitumin 6 kuadrat min 4 x 1 x c yaitu c-nya adalah 8 maka kita dapatkan d-nya = 36 dikurangi 32 kita dapatkan dengan = 4 maka y = Min 4 per 4 x 1 yaitu = min 1 jadi kita dapatkan titik puncaknya adalah 3 koma min 1 lalu dengan cara yang sama kita Gambarkan diagram kartesius nya dengan sumbu x dan sumbu y dan untuk titik potong sumbu x nya adalah 4,0 dan 2,0 kemudian kita gambarkan titik potong sumbu y yaitu 0,8 dan titik puncaknya adalah 3 koma min 1 kemudian kita hubungkan keempat titik tersebut sehinggaGrafik fungsi fx = x kuadrat min 6 x + 8 kemudian yang ketiga kita Gambarkan grafik fungsi fx = 2 x kuadrat + 3 x + 2 dengan cara yang sama kita cari titik potong sumbu x nya tetapi ternyata 2 x kuadrat + 3 X + 2 = 0 tidak dapat kita faktorkan maka kita akan mengecek nilai diskriminan dari fungsi tersebut yaitu d. = b kuadrat min 4 AC kita masukkan b nya adalah 3 maka 3 kuadrat dikurangi 4 dikali a yaitu 2 dikali C yaitu 2 kita dapatkan 9 dikurangi 16 yaitu = min 7 ternyata nilai diskriminannya kurang dari 0, maka fungsi tersebut tidak memiliki titik potongsumbu x maka kita lanjutkan untuk mencari titik potong pada sumbu y yaitu dengan memasukkan nilai x nya = 0 maka FX = y = x 0 kuadrat + 2 kita dapatkan Y = 2 maka kita dapatkan titik potong sumbu y nya adalah 0,2 selanjutnya kita cari titik puncaknya dengan x nya adalah min b per 2 a maka kita dapatkan esnya = min 3 per 2 x 2 yaitu = min 3 per 4 atau sama dengan minus 0,75 dan untuknya = min b per 4 adalah min 7 maka y = min min 7 per 4 x 2 yaitu = 7 per 8 atau sama dengan0,875 maka kita Gambarkan diagram kartesius nya dengan sumbu x dan sumbu y dengan titik potong sumbu y nya adalah 0,2 dan titik puncaknya adalah min 3 per 4 koma 7 per 8 atau Min 0,750 koma 875 maka kita dapatkan titik potong sumbu y dan titik puncaknya seperti berikut ini lalu kita hubungkan kedua titik tersebut sehingga terbentuklah grafik fungsi fx = 2 x kuadrat + 3 x + 2 sampai jumpa di pertanyaan berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Gambarlahsketsa grafik fungsi kuadrat berikut. g (x) = -3x^2 + 5x - 10 Fungsi Kuadrat dengan Tabel, Grafik, dan Persamaan FUNGSI KUADRAT ALJABAR Matematika Cek video lainnya Teks video Sukses nggak pernah instan. Latihan topik lain, yuk! Matematika Fisika Kimia 12 SMA Peluang Wajib Kekongruen dan Kesebangunan Statistika Inferensia Dimensi Tiga
Ingat persamaan umum fungsi kuadrat adalah 1. Menentukan titik potong terhadap sumbu . Pertama liat diskriminan dari fungsi kuadrat karena maka fungsi kuadrat diatas tidak memotong sumbu x 2. Menentukan titik potong terhadap sumbu y. jadi titik potong terhadap sumbu y adalah . 3. Menentukan sumbu simetri 4. Menentukan nilai minimum 5. Menentukan koordinat titik balik koordinat titik balik Dengan demikian, sketsa grafik fungsi adalah sebagai berikut
Gambarlahgrafik fungsi kuadrat berikut: (25) Fungsi, Persamaan dan Pertidaksamaan Kuadrat Page | 25 2. Tentukan nilai diskriminan yaitu D = b2 – 4ac dari masing-masing fungsi kuadrat pada nomor 1. 3. Lakukan lagi kegiatan seperti nomor 1 dan 2 untuk fungsi kuadrat berikut! (26) Fungsi Kelas 9 SMPFUNGSI KUADRATFungsi kuadrat dengan tabel, grafik, dan persamaanFungsi kuadrat dengan tabel, grafik, dan persamaanFUNGSI KUADRATALJABARMatematikaRekomendasi video solusi lainnya0353Diketahui garis dengan persamaan x + 4y + 3 = 0 dan 2x - ...0247Grafik dari y = 4x - x^2 paling tepat digambar sebagai...0404Jika f adalah fungsi kuadrat yang grafiknya melalui titik...0349Grafik fungsi kuadrat yang memotong sumbu X di titik -4,...Teks videodi sini ada pertanyaan yaitu Gambarlah grafik fungsi kuadrat y = min x kuadrat + 2 x + 8 untuk menjawab pertanyaan tersebut maka kita akan mencari dulu titik potong terhadap sumbu x dan sumbu y untuk yang pertama kita akan mencari titik potong terhadap sumbu x nya maka artinya nilainya sama dengan pada fungsi kuadrat tersebut karena isinya adalah 0, maka di sini menjadi 0 = min x kuadrat + 2 x + 8 selanjutnya kita akan mencari titik potong terhadap sumbu x nya dengan cara pemfaktoran faktoran maka di sini kita akan mengubah min x kuadrat supaya menjadi positif sehingga harus dikalikan dengan 1 maka 0 = x kuadrat min 2 x min 8 di mana saat kita faktorkan maka akan menjadi X min 4 dikalikan dengan x2 sehingga nilai x nya sama dengan 4 atau nilai x y = negatif 2 maka titik potong terhadap sumbu x nya adalah 4 koma Min 2,0 selanjutnya kita akan mencari titik potong terhadap sumbu y maka artinya nilai x nya = 0 dimana y = x + 2 x + 8 dengan x maka y = Min 0 kuadrat + 2 x 0 + 8 maka nilainya sama dengan titik potong terhadap sumbu y adalah 0,8 lanjutnya maka di sini kita akan mencari puncak dari grafik tersebut didapatkan dari min b per 2 koma negatif dari diskriminasi itu b kuadrat min 4 x a * c dibagi dengan 4 A maka disini untuk fungsi kuadrat tersebut nilai a-nya adalah min 1adalah 2 dan nilainya adalah 8 sehingga negatif dari B yaitu negatif 2 dibagi dengan 2 kali a nya adalah negatif 1 koma negatif 2 kuadrat adalah 4 dikurangi dengan 4 kali a nya adalah min 1 dikalikan dengan c-nya adalah 8 kemudian dibagi dengan 4 kali a nya adalah min 1 sehingga disini menjadi negatif 2 dibagi dengan negatif 2 koma negatif dari 4 lalu ditambahkan dengan 32 dibagi dengan negatif 4 maka disini menjadi negatif 2 per 2 yaitu 1 kemudian koma negatif negatif maka positif sehingga menjadi 36 dibagi dengan 4 maka titik puncak pada grafik fungsi kuadrat tersebut itu ada1,9 langkah selanjutnya titik-titik tersebut akan kita beri nama yaitu titik a. Titik B titik c dan titik D selanjutnya titik ABC akan kita Gambarkan dalam sebuah diagram kartesius Sehingga ini adalah titik-titiknya maka untuk membentuk suatu grafik kita akan menggabungkan titik-titik tersebut sehingga terbentuklah sebuah grafik parabola yang terbuka ke bawah dengan titik puncaknya adalah 1,9 sampai jumpa di Pertanyaan selanjutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul .